logo

Marina Shvartz: Testing stochastic AI models with hypothesis

time2 yr agoview0 views

Session language – English Target audience – Developers, Data Scientists

In this talk, I will cover shortly the theory of property-based testing and then jump into use cases and examples to demonstrate the hypothesis library and how we used it to generate random examples of plausible edge cases of our AI model.

Over the years, testing has become one of the main focus areas in development teams, a good feature is a well tested one. In the field of AI this is many times a real struggle. Since eventually most advanced AI models are stochastic - we can’t manually define all their possible edge cases. This led us to use the hypothesis library which does a lot of that for you, while you can focus on defining the properties and specifications of your system.

In this talk, I will cover shortly the theory of property-based testing and then jump into use cases and examples to demonstrate how we used the hypothesis library to generate random examples of plausible edge cases of our AI model.

Loading comments...